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ABSTRACT

One of the most interesting questioné in the psychology of
problem solving is the nature of the interaction between a
problen's intrinsic structure and a problem solver's strategies
or behaviors. The present paper suggests the use of techniques
developed in research in mechanical problem solving to assist

in formu;ating and illuminating this guestion. The authors

also gseek to develop a relationship between artificial
intelligence methods: and 'structuralist' theories of cognition
by relating groups of symmetry transformations and 'conservation!

operations,



Section I: Introduction

One of the most interesting questions in the psychology of problem solving
. 1is the nature of the interaction between a problem's intrinsic gtructure and the

strate—ies or behaviors employed in attempting to solve the problem. Several

studies have recently appeared addressing this subject: 1) the learning of mathe-
matical structures such as the Klein Group or the Cyclic group of order four,
Branca & Kilpatrick [1], 2) the study of analogy and transfer in related
problem solving situations, Reed, Ernst, & Banerji-[2], 3) the development

of mechanical theorem provers both in equation solving, Bundy [3], and in
elementary geometry, Gelernter [4] and-Goldstein [5]. This research, although
from diverse points of view, shares a common interest: understanding the effects
of problem structure - for instance, a problem's possible subproblem and
symmetry decompositions - on efficient problem s07v1ng. /

This paper suggests techniques that may further formulatlng and illuminating
this question. More ambitiously, the authors eeek to develop a relationship
between artificial intelligence methods and Piagetian or 'structuralist' theories
of cognition.

Nilsson [6] has defined the state space revresentation of a problem gs the

set of distinguishable problem configurations or situations together with the
permitted moves or steps £7om one problem situation to another. Thus the state
space of a problem consists of an initial state, together with all the states
that may be reached from the initial state by successive legal moves in the
problem. One or more of these successor states are classified as goal states.
The state space of a problem, represented as a non-directed graph,will be unigue
.only if the problem®s description clearly deliniates its initial and goal state(ss)
and its set of legal moves. Finally, -the concept of the state space of a problem
can be generalized to the analogus structure for an N-player geme, i.e., the

game tree or graph.

Banerji [7], Banerji & Ernst [8] and other: researchers have offered mathe-
matical descriptions to characterize state spaces. This 'state space algebrat
gllows such concepts as problem comparison, decomposition, and extension to be
well defined and also allows problem solving studies in the areas of problem
analogy, transfer, and generalization to be extremely precise.

In early artificial intelligence research both Gelernter's Geometry Theorem
Prover [4] with its use of the symmetries within the syntax of a problem's descrip-
tion, as well as Yewell, Shaw, and Simon's General Problem Solver [9], with its

utilization of a problem's possible subproblem decompositions affirm the need for



as complete as possible exploitation of a problem's structure for effective
problem solving. Again, in robot plan formation Sacerdoti [10] uses ABSTRIPS
to focus on the important features of a problem's structure and to ignore the
unmecessary detail that leads STRIPS to combinatorial problems.

Newell and Simon's later work [111 permits in principle a very detailed
interpretation of an individual's problem solving ‘'protocol' as steps in infor-
mation processing. However, as the 'prohlem space' for this research varies from
subject to subject for each individual problem it &lso lends to their model a
definite post hcc character. Since no final commitment concerning the structure
of the 'problem spece' is made until after the problem solving is observed, the
potential for predicting the effects of a problem's structure on a subject's
problem solving behavior seems to be lacking.

In the next section two ideas are introduced. First, we assert a fundamental

correspondence between conservation operations and symmetry transformastions.

In the sense of Piaget, a conservation operation is the ability of a problem
solver to respond that two different states ol the environment are equivalent
when they are functionally the same, that is when they both possess the same
value for some perceptual or cognitive variable. For examnle; 17 is said to be
equivalent to 32 moduls 3, since both have the same remainder on division by 3, In
general, a symmetry transiormation is a mapping which carries one problem state
into another in such a way as to Ieave unchanged important observable features.
In the everyday sense of the word symanetry these features are geometric, for
example, the transformation which changes a particular configuration of objects
into its 'mirror image' may leave the appearance of the configuration uachanged.
We are interested, however, in a more general symmetry, for example, that in
problem descriptions and underlying problem structure, as well as in the
readily apparent geometric symmetries. '

The second idea pursued in this section is that in problem solving, a
subgoal and subproblem decomposition of a problem may govern a problem solver's
behavior even when he or she is mot consciously seeking to arrive at}%qparticular
subgoal, and desyite the fact that the infrastructure of subproblem's within the
main problem may not on the surface be apparent. Furthermore, given a subproblem

decomposition, one kind of symmetry whose effect may be explored is the presence
.in the problem of subprcblems of identical (isomorphic) structure.

In the third section additional concepts concerning a problemts state space
are rigorously defined, and several hypotheses offered concerning effects of
problem structure on subject's paths through the state space, for example a pre-—
dominance of goal and subgoal directed paths, and an increased likelihood of

congruent paths. through isomorphic subproblems..
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In the fourth section, the Tower of Hanoi problem Nilsson [6] and the Tea
Ceremony problem Newell [12] are used to illustrate the main ideas developed.

Finally, some suggestions for further experimental investigation are proposed.

Section ITr

(A) Conservation Operations and Syrmetrv Transformations

(B) Subproblem Decompositions

(A) In Tic-Tac-Toe (Noughts & Crosses) a player, say X, is said to "fork' his
opponent when he places his X in such a position on the board that 1) there
are as a result two possible 'winning moves' for X, and 2) O is able, in the
next move, to block only one of these 'winning moves'. There are several
aifferent 'forking positions' possible on the Tic-Tac-Toe board (see Figure
1). These 'forking' relationships are conserved or invariant over all
rotations and reflections of the game board, and so it can be said that there
is a conservation or functional equivalence among the different 'forking'
situations. It is also possible to construct symmetry transformations or
mappings of one forking situation onto any other. The authors would like to

establish a logical equivalence between conservation operations and groups of

syminetry transformations in characterizing this and other problem solving situatiorns.

The correspondence between conservation laws and symmetries of nature is
well known in modern physics. Conservation of momentum derives from the invar-
iance of physical interactions under spatial translations, conservation of angu-
lar momentum from rotational invariance, conservation of energy from invariance
under time translations, etc. Feynman le]“

That such a correspondence existed as a general principle long remained
unobserved. In some instances physicists became aware of and successfully ex-
pressed a conservation law prior to understanding that the law actually derived
from a known symmetry of the physical world, for example, in the cases of conser-
vation of momentum, angular momentum, and energy. In other i:istances the syumetry
was wetl known, and physicists proceeded to define an observable whose counservation
followed automatically from the fact of obedience to the symretry. Thus conser-
vation of parity follows from the supvosed invariance of physiecal interactions
under spatial reflection. Such newly defined observables proved immeasurably
useful when it was learned “hat on a sub-atomic level, symmetries such as
spatial reflection which had heretofore beer taken for granted were subject to
viclation, and non-conservation occurred. Likewise there were some well known
conservation laws, based on which previously unknown symmetries could be defined,
Thus conservation of electric charge can be interpreted as a conseguence of invar-
iance under rotations in an abstract mathematical space (Isotopic gpin-space [14]).

Today it is understood that the pairing of a conservation law with a symmetry



may be regarded as a mathematical rather than an empirical relationship, which
follows from the mathematical theory of Lie groups (Feynman [13]). This relation-
ship asserts that to every set of observables corresponds a certain alsebra of
observables; and to every such algebra corresponds a group. If the values of the
observableé are conserved, i.e., unchanged as the system develops in time, then
it fturns out that the group elements describe physical symmetry transformations
of the system. Further,. any pair of symmetry transformations may be performed
successively to generate a third symmetry transformation, defining an associative
binary operation. The identity transformation ig included as a symmetry by con-
vention, and to every symmetry transformation there corresponds the inverse trans-—
formation which returns the system to its original configuration (Feynman ElB]).
The group is the paradigm in mathematics of the methodology which has been
termed ‘structuralist' (Pisget [15]). This methodology has been applied to fields
of study as diverse as anthropology, linguistics, and psychology, as well as to
mathematics [15]‘~ Kccording to Piaget a structure in the most general sense is a
system or set within which certain relations or cperations have been defincd,
enbodying the concepts'of wholeness, transformation, and self-regulation. For
example a system of kinship constitutes a structure in anthropology as does a
group in mathematics. In Pisgetian developmental psychblogy, the conservation
operations - conservation of number, volume. quantity, etc. — are transformzstions

which represent the coenitive structures assumed: to underlie certain patterns of

behavior. Acquisition of these conservation operations by children defines
sequential stages in their cognitive development.
g In view of the parsllel fundamental roles played by group structures in
mathematics and cognitive structures in developmental psychology, it is natural
to try to look at the acquisition of Piagetian conservation operations as egui-
valent to the acquisition of a group of symmetry transformations.

For an observable.(sﬁch as number, quantity, etcy) to be conserved means
in fact that when a given state is scmehow transformed into an altered state,
the value of the observable is unchanged from its initial value. Of course, for
the second state to be regarded as different from the first state at all, there
must be at least one other observable which dces change in value under the trans-
formation, and which is not conserved by the transformation. A symmetry trans-
forwation may be defined, then, as a one-to-one mapping from the set of states
onto itself which leaves invariant the specified relationships among the states.
Any collection of such symmetry transformations generates a symmetry group.

Let us say that a certain symmetry group & conserves a given set of observables



when for each state S in the system, all states which may be obtained from
5 by applying symmetry transformations from G have exactly the same values
of the specified observables. The maximal symmetry group possessing this
property for a given set of observables is the group containing every
symmetry transformation which preserves the values of the specified
observables. '

As an example, consider the rearrangement of n cbjects on a table or
two-dimensional surface depicted in Figure 2. The final configuration of
objects (described by the coordinates %X{ «... Xp') may be obtained from the
initial configuration (%7 <. x,) by means of a rearrangement mapping which
appropriately transforms the points in the two-dimensional plane. Such a
rearrangement must be one-to-one (so that two objects dc not end up at the
same point) and reversible, Since any two rearrangement mappings may-te
applied successively to yield a third, the set of all such mappings forms a
group K. For this example the collection of states is the set of all
possible configurations cof n objects on the two-dimensional surface, for
n=0,1,2.,..

To say that a subject 'conserves number' means that no matter how a
given state of the environment is transformed into an altered state simply by
moving the objects around, the value of the observable 'number' - according
to the subject's report - remains unchanged. The group K defined above,
that is the group of one-to-one surjective mappings from a region of R% onto
itself, maps the set of states onto itself in such a way that a state
specified by n points continues to be specified by n points after it is
transformed, and thus has the same value of the observable 'number'. It is
not difficult to see that K fits the definition of a symmetry group conserving
that observable. Thus the acquisition of 'number comservation', that is the
ability of a subject to respond that the number of objects remains uncharged
when only the positions of the objects have been changed, is logically
equivalent to the acquisition of the structure of the symmetry group K, that
is, the ability to undo (invert) any rearrangement transformation and to
catenate any two such transformations successively.

It may be hypothesized that stages in the acquisition of such a symmetry
group structure actually correspond to the acquisitior of particular subgroups
of this symmetry group. For example, a child might at some time respond
consistently th:at the number of objects is unchanged when a configuration is
merely translated a certain distance in space, without its having been spread
out or otherwise rearranged. If this were to occur we would say that the

subgroup of K containing all translations had been acquired as a symmetry




structure. Verification of this hypothesis would further demonstrate the
usefulness of the conservation operation/symmetry group correspondence.

In arguing for the reformulation of conservation operations in terms of
symmetry groups, it seems natural to cite examples of systems in which the
symmetries are familiar, but the identification of conserved quantities may be
cumbersome. Many examples drawn from problem solving turn out to be easier to
describe in terms of symmetry groups than in terms of quantities comserved by
the transformations in those groups. For example, Tic-Tac-Toe or Noughts and
Crosses., In this game there are nine distinguishable states which can be
reached by the first move of the first player. However, modulo the rotation or
reflection symmetry, only three distinguishable states exist (see Figure 3).

In constructing the state space representation for Tic-Tac-Toe, one could choose
to represent all the distinguishable states of the system, and so obtain a very
large state space; or one could use the much smaller state space obtained by
regarding those states conjugate by symmetry as equivalent. This latter choice
corresponds to reduction of the state space representation modulo its symmetry
transformations

In studying human problem solving, we must take into account the possibility
that the subject's behaviour does not initially reflect all the symmetry which
is actually present. Therefore, to map the subject's behaviour faithfully,
we should begin with the expanded state space representation i.e. the state space
containing all possible legal states of the problem. This expanded space (@nd
its formal properties) will be constant across all subjects solving this problem
and so eliminate post hoc analysis (p.2)

Tic-Tac-Toe provides an example of a game in which the rotation and
reflection symmetry is easily recognized, but the corresponding conserved quantities
are cumbersome to define. For example, one such quantity would be the numher
of X's in corner squares, a number unchanged by the rotation or reflection
operations. Number Scrabble [11], a game isomorphic to Tic-lac-Toe, may be
described as follows. The integers 1, 2, 3, ... , 9 are written on a pad,
and the two opposing players take turns selecting single numbers for himself.
Neither player may select a number already taken. The goal is to obtain any
three numbers which add up to exactly fifteen. Figure44 illustrates the
isomorphisn between this game and Tic-Tac-Toe. A player trying to learn this
game would not have available the geometric symmetry presented by the Tic-Tac-Toe
grid. Without prior faciliarity with the magic square, a player would have to

seek rules such as, 'If the first player chooses 3, then the second player must



pick an even number to avoid losing'. Unbeknownst to the player, the relevant
'observables' are just those which are conserved by the Tic-Tac-Toe symmetry
'even numbers selected', 'odd numbers excluding 5", and so on. Tic-Tac-Toe
and Number Scrabble illustrate (a) that symmetries may be more convenient than
the quantities conserved by those symmetries for formulating the notion of
equivalence among states, (b) that symmetries and conserved quantities are,
however, logically interchangeable, and (c) that the rules of a game may be
reformulated in such a fushion as to make identification of the conserved
quantities easier or more convenient than the characterization of the symmetries.
Finally, the formal correspondence between a group of symmetry transformations
and the observable quantities conserved by these symmetry transformations
suggests that acquisition of symmetries may be as fundamental to cognitive
development as is the acquisition of comservation operations. We have also
seen how the presence of symmetry may be represented in the state space of a

problem or game.

(B) A second feature of a problem which is amenable to study utilizing the
state space is a problem's infrastructure of subproblams. It has been commonly
held that an effective problem solving technique is to establish subﬁroblems
or subgoals whose solution or attainment might assist in the conquest of tﬁe
main problem. Polya [16] suggests such an approach in discussing his problem
solving 'heuristics', it forms the basis of Newell, Shaw, & Simon's General
Problem Solver [9], and suggests to Nilsson [6, p 80] one way to reduce the
state space. But to establish rigorously the role of such identification of
subgoals in human problem solving behaviour remains difficult and psychologists
are divided even over the assumption of 'goal-directedness' (Kimble [17, sec. 131).
Characterization of subproblems as subspaces of the problem's state space should
assist in investigating the behavioral consequences of a subproblem decomposition
by the problem solver. One may further discuss, independently, the group of
symmetry transformations of a subproblem, or explore the effects of the presence
in a problem of different subproblems having identical (isomorphic) structure.
The above considerations suggest the utility of mapping the problem
solver's steps as paths through the state space representation of the problem.
Based on the formal properties of the specific problem's state space, such as
its symmetry and decomposition into subproblems, hypotheses can be formulated
which predict the effect of this structure on the paths generated by the problem

solver. Then the door is open to the development and empirical test of general



algorithmic or mechanical procedures that might replicate the properties of
the paths generated by human problem solvers. The decision to represent
problem solving behavior as paths through the state space of the problem is
motivated by the desire to make precise the data which needs to be 'explained’
by a theory of human problem solving.

In practice it may not always be easy to represent behavior in this
fashion, since the uniquness of a problem's state space representation relies
on the preciseness of the problem's statement. Further, a problem solver's
production of paths depends on his or her ability to discriminate among the
perceptual or cognitive variables which characterize the states and legal
moves of the problem. The best experimental situation then, is a problem whose
states correspond to different discrete situations of an actual physical device,
such as Tic-Tac-Toe, N-pile NIM, or the Tower of Hanoi and Tea Ceremony
problems to be discussed in section four. Other available means for recording
a subject's behavior as a succession of states entered may include recordings
of oral comments, written notes, or even gestures and eye movments (Bartlett

Ejé}, Newell & Simon_[li}, and Young [léb.

Section III: (A) Definitions and (B) General Hvpotheses

(3). Before proceeding with further discussion, definitions are given for the
concepts central to the present approach. These definitions are based on and
expanded from those given by Nilsson [é]. The state space of a problem is the
set of distinguishable situations or states of the problem, together with the
permitted transitions or moves from one state to another. The problem must

specify an initial state and one or more goal states, and so the state space

may be visualized as a non-directed graph (Figure 6).
A subspace of the state space is a subset of the states, together with
the permitted transitions which obtain between these states in the subset. A

subproblem is a sabspace of the state space with its own initial and subgoal (g)

states. For a subproblem it is required that if the initial state is not the
initial state of the problem, it can be entered from a state outside the sub-
space; and if a subgoal state is not a yoal of the main problem, it can be used
to exit from the subspace - i.e., to enter a state of the problem outside
of the subproblem. There are often many ways to decompose a particular problem
into subproblems, which correspond to different choices of subspaces within
the state space.

Two problems (or subproblems) are said to be isomoxrphic if and only if
there is a bijective mapping from the state space of the first onto the state

space of the second and: 1) the initial state of the first problem is mapped



onto the initial state of the second, 2) the set of goal states of the first
problem is mapped surjectively onto the goal states of the second, and 3) a
transition from one state to another is permitted in one problem if and only
if the corresponding transition is permitted in the other.

An automorphism of a problem is an isomorphism of the problem onto itself

and is called a symmetry transformation or symmetry automorphism. The set of

all the autcmorphisms of a problem Zorms a group under the binary operation

of composition or the successive application of two automorphisms. This group

The states of a problem may be distinguished by virtue of having different

discrete values for a set of variables called observables. These observables,
characterizing the problem states, may refer to color, position, or number,
etc. An observavle is said to be conserved by a group of symmetry transfor-
mations, if and only if for any state, the value of that observable is un-
changed by any element of the group of transformations.

Let S be a state of a problem, and consider the set of all states which
can be obtained by applying automorphisms or symmetry transformations from a
group G to S. This set of states is called the orbit of S under the automor-

phism group C. Two states arz said to be conjugate modulo the symmetry group G

if they are in the same orbit under G.

The orbits within the state space form mutually disjoint equivalence

classes of states. A new and simpler state space may now be constructed
canonically by considering each equivalence class as a state in its own right,
or alternatively, oy selecting one representative state from each orbit. The

state space thus obtained is said to have been reduced with respect to its

symmetry group G, or reduced modulo G. G may be the full automorphism group

of the original state space, or any subgroup thereof..
A path in the state space of a problem is a seguence of states Sl' Sz,
cse Sn such that for i =1, 2, ... , n-1, the pair Si' S‘*l represents a

permitted transition of the problem. A solution path for a problem is a path

in which Sl is the initial state and Sn is a goal state, with Sz, ey Sn—l

neither initial nor goal states of the problem. Two paths within respective

isomorphic problems are said to be congruent (modulo the isomprphism) if one

rath is the image of the other under the isomorphism.

We have seen above that one way to reduce the size of the state space
is with respect to a group of symmetry autcmorphisms of the problem. A
second means of state space reduction is with respect to the subproblem
structure. The state space may be described, albeit nonuniguely, as a union
of mutvally disjoint subspaces, such that for any ordered pair of subspaces,

a transition exists from a state in the first to a state in the second. An



entire subspace may thus be regarded as a single state in the reduced

state space, and a transition is permitted from one subspace to another
whenever a transition does in fact exist from a state in the one to a

state in the other. Each subspace, now a state in the reduced state space,
becomes also a subproblem of the original problem whenever a particular entry
state is designated as 'initial', and any ox all of its exit states are
designated as'goals'. We then say that the state space has been reduced

modulo its subproblem decomposition.

Finally, one may address the concept of a non-randocm or a goal-directed
path within a problem or subproblem. Roughly speaking, a non-random path
would differ locally - perhaps in the number of *turnsior ‘loops - from random
paths generated through a problem's state space representation. A goal-
directed path is a solution path which does not 'double back' on itself within
the state space, moving consistently 'towards' rather than taway from' the
goal state. Criteria for defining 'loops! or 'doubling back} or 'distance
from the goal state', etc, are for the present to be established in the context
of each specific problem under consideration. While these criteria may differ
across problems of different structure, they will remain constant across

populations of subjects solving a particular problem.

(B) In problem solving it may be assumed that the solver acts sequentially
upon problem situations (states) to generate successor states, a process which
can be described, as discussed above, by means of paths through a state space
representation of the problem. It is nowhere suggested that the problem solver
'perceives' the state space as an entity during problem solving. The symmetry
properties which have been discussed are formal Properties of the state space,
which may (as in Tic-Tac-Toe) or may not (as in Number Scrabblel correspond to
geometrical or perceptual properties of the problem readily apparent to the
problem solver.

The approach to this stage of research has been to formulate hypotheses
respecting the paths generated by problem solvers in the state space of a

problem. Such hypotheses 1) are motivated by the formal properties of the

state space under discussion, and 2) represent the anticirated effects of the

problem structure in shaping problem solving behavior. The following hypotheses

of a more-or-less general nature are suggested.

Hypothesis 1. (a) In solving a problem (or subproblem) the subject
generates non-random, goal-directed paths in the state space
representation of the problem (or subproblem), and (b) when sub-
goal states are attained, the path exits from the respective
subproblens.

1o



Hypothesis 2. Identifiable 'episodes' occur during problem solving
corresponding to the solution of various subproblems. That is,
path segments occur during certain episodes which do not consti-
tute the{direct) solution of a problem, but which do constitute
the solution of the iscmorphic subproblems of the problem.

Bypothesis 3. The problem solver's paths through iscmorphic
subproblems tend to be congruent.

Hypothasis 4, Given a symmetry group G of automorphisms of the
state space of a problem,.there tend to occur successive path
segments congruent modulo G in the state space.

It may be that. the validity of hypotheses 1 and 2 depends on the particu-
lar way that the state space of teh problem is decomposed into subproblems
since such a decomposition is often not unique. Hypothesis 4 (symmetry
acquisition) is suggestive of the 'insight' phencmenon which changes the
gestalt of the problem solver (Wertheimer {ZQ]) and often plays an important
role in the eventual problem solution.

These hypotheses are not to be regarded as a definitive list, but rather
as preliminary and indicative of the kind of analysis possible of the effects
of problem structure on the problem solver's behavior. If walid, these
hypotheses would offer fairly general constrzints on the properties which

mechanical models must display to simulate human problem solving.

Section IV:

Two Problem Solving Studies and Sugcestions for further Research

Let us seek to make the foregoing ideas more concrete by considering
two problems that have been used for empirical investigation (Luger [Zﬂ ).
The Tower of Hanoi problem has been extensively discussed in the literature
and its state space censidered by Nilsson ]k]. It is a natural problem to
consider both because its well defined state space has a rich subproblem
structure and because its state space possesses somewhat more symmetry than
is immediately apparent in the problem environment.

In the Tower of Hanoi problem four concentric rings (labelled 1, 2, 3,
4 respectively) are placed in crder. of size, the largest on the bottom, on
the first of three pegs (labelled A, B, C); the apparatus is pictured in
Figure 5a. The cbject of the problem is to transfer all the rings from peg
A to peg C in the minimum number of moves. Only one ring may be moved at a
time, and no larger ring may be placed over a smaller one on any peg.

The Tea Ceremony, see Figure 5b, is an isomorph of the Tower of Hanoi.

Three people - a host and an elder and younger guest - participate in the

11



ceremony. There are four tasks they perform - listed in ascending order of
importance: feeding the fire, serving cakes, serving tea, and reading poetry.
The host performs all the tasks at the start of the ceremony, and the tasks
are transferred back and forth among the participants until the eldest guest
performs all the tasks, at which time the ceremony is completed. There are
two constraints on the one-at-a-time transfer of tasks: 1) only the least
important task a person is performing may be taken from him, and 2) no person
may accept a task unless it is less important than any task he is performing
at the tims. The object of the Tea Ceremony game is to transfer all the four
tasks from the host to the elder guest in the fewest number of moves. As with
the Tower of Hanoi, the subject attempts the game repeatedly, starting over
again whenever he or she wishes until the rings are moved (or tasks transfered)
in the fewest possible number of transitions.

In the isomorphic relationship between the Tea Ceremony and the Tower of
Hanoi the people - host, youth,and elder - correspond respectively with pegs
A, B, and C. The four tasks - feeding the fire, serving cakes, serving tea,
and reading poetry - correspond respectively with rings 1, 2, 3, and 4. It
can be checked that the initial state, goal state, and legal moves of the
two games correspond.

Figure 6 is the complete state space representation of the Tower of Hanoi/
Tea Ceremony problem. Each circle stands for a.possible position or state of
the games. The four letters labelling a state refer to the respective pegs
(people} on which the four rings (tasks) are located. For example, state CCBC
means that ring 1 (fire), ring 2 (cakes), and ring 4 (poetry) are in their
proper oxder on peg C (performed by the Elder). Ring 3 (tea) is on peg B
(performed by the youth). A legal move by the problem solver always effects
a transition between states represented by neighboring circles in Figure 6.
The solution path containing the minimum number of moves consists of the
fifteen steps from AAAA to CCCC down the right side of the stlate space diagram.

The Tower of Hanoi/Tea Ceremony has a natural decomposition into nested
subproblems. For example, to solve the 4-ring Tower of Hanoi problem, it is
necessary at some point to move the liargest ring from its original position
on peg A to peg C, but before this can be done the three smaller rings must
be assembled in their prope. order on peg B. The problem of moving the
three rings from one peg to another may bes termed a 3-ring subproblem, and
constitutes a subset of the state space of the 4-ring problem. The 4-ring -
state space contains three isomorphic 3-ring subspaces, for which the physical

problem solving situations are different by reason of the position of ring 4.
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Bach subspace becomes = subproblem when one of ity entry states is designated as
the initiel state, and its exit states are designated as goal states. Similiarly}
each 3-ring subspace contains three isomorphic 2-ring subspaces for a total of
nine in the 4-ring state space; and each 2-ring subspace may be further decom-
posed into three l-ring subspaces, comprising only three states apiece. Note the
examples in Figure 6 of 1-, 2-, and 3-ring sﬁbspaces.

Fach n-ring subproblem, =@s well as the main problem, adwmits of a symmetry
automorphism. The automorphism maps a goal state of the n-ring problem onto the
conjugate goal state which corresponds to transferring the m rings to the other
open peg. Were the three pegs of the Tower. of Hanoi board +to be arranged at the
cormers of an equilateral triangle (as are the pecple in the Tea CEremony), the
symmetry automorphism would represent the the geometric operation of reflection
gbout the altitudes of an equilateral triangle.

Criteria are established [21] for 'non-randomness' and 'Goal-djrectedness' of
subject's paths through the Tower of Hanoi/Tea Ceremony state space. The number
of 'turns' and 'loops' of a subject's path is compared with the ‘turns' and 'loops!
of the same length generated in the Tower of Hanoi/Tea Ceremany state spacce.

A "metric' is defined also, the function of the number of states the subject's
current state is distant from the goal state. If this function is non-increasing
over the subject's path, the path is said to be 'goal-directed.' This same metric
is established to measure goal directedness within subproblems. When subgoal
states are attained the path that exits from the subgoal is examined to see if it
also exits from the subproblem. Figure 7a shows a subject's path that decomposes
the state space modulo its 2-ring subproblems - each 2-ring subproblem is solved
in the minimum number of steps, while the 3-ring subproblem is not. This rep-
resents a 2-ring 'episode' in the problem's golution. Figure 7b shows three
congruent paths through isomorphic 2-ring subproblems.

The problem solving data of 45 adult subjects solving the Tower of Hamoi
and 21 adult subjects solving the Tea Ceremony problems are reported by Luger [21].
Except for Hypothesis 3 (the production of congruent paths through isomorphic
subproblems), all the hypotheses are supported by the data. Especially strong
(near- 1007, ) is the support of the special role played by subgoal states within
the problem (Hypothesis 1b) . 86i4 of all the subjects have at leaszt one prcblem
solving 'episode' with 60 7/ showing two or more of the three thecoretically possible
fepisodes! (Hypothesis 2). 52ﬁé of all subjects in the studies interrupted a path
and immediately produced a path segment that was the symmetric conjugate of the
interrupted path (hypothesis 4). This new path was often the minimuim step
solution path.

Pigure 8a pictures the actual paths through the state space generated by one

adult subject solving the Tower of Hanoi problem. This subject's behavior happened



to conform to all four proposed hypotheses. Tre paths are both goal-and subgoal-
directed, znd exit from the subprocblem whenever a subgoal state is entered. The
first two trials contain five instances out of seven of minimum solution of the
2-ring subproblem, while the 3-ring subproblem has not yet been solved by the
shortest path - a 2-ring 'episode'. Trial 1 illustrates two congruent non-mininum
paths through 3-ring subproblems. Finelly, trial 2 is interrupted and trisl 3,
the shortest solution path, follows as the imasge of trial 2 under the symmetry
automorphism that exchanges pegs B and C.

Figure 8b pictures the paths of an adult subject solving the Tea Ceremony
problem. The paths within each prcblem are gcal-directed, and whenever a sub-
problemts goal state is enftered it is left by the unigue path that also leaves
the subproblem space. From the beginning the probiem is reduced modulo its 2-
task subproblems, since during the problem solving 12 of 14 of the 2-task sub-
problems are solved in the minimum number of steps. After the first 3-task sub-
problem, there is an ‘'episode' in which 5 of 6 of all further 3-~task subproblems
are solved in the minimum number of steps but the entire problem (4~task) is mot,
reducing the problem by its 3-task subproblems. The first and second trials
begin with cengruent paths (non—minimum) through 3-task subproblems. The third
trial ig interrupted, and its symmetric conjugate -~ which solves the problem-

is precduced in the fourth trial.

In summary, the present paper suggests one natural way to make the strategy/
structure distinction. We let the stiucture of a problem refer %o the formal
properties of its state space representation, such as its symmetry zutomorphisms
and possible subproblem decompositions. We consider the subject's possible

cornitive structures to include the conservation operations, symmetry and subproblem

decompositions that the subject can apply to the problem situation. An example of
this in the Tower of Hanoi is the ability of a subject to solve all 2-ring sube-
problems, no matter where they are in the in the context of the problem, in the
minimum number of steps. These structures determine the states that the subject
treats as distinct and those treated as equivalent. These may change. during
problem solving, leading to an effective reduction of the state space. A subject's
behavior may be faithfully mapped as long as the state space representation that
is utilized by the researcher is sufficiently detailed, in that it does not treat
states as equivalent which the subject treats as distinct.

We let the term strategy refer to particular rules or procedures for taking
steps within the state space. Different individuals mgy employ different
strategies in solving tae same problem, and the same individual may employ

different strategies in solving different but isomorphic problems. The present
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paper does not explain strategies per se, but hypothesizes that even in the

context of different strategies, certain patterns of behavior tend to occur
as a consequence of the structure of the problem.

There are several obvious, very broad directions for further experimental
research, including: 1) the test feor 'transfer' in the behavior of a subject
solving different problems having related -~ isomorphic or homomorphic - structure.
The first author has in fact a study in progress looking for transfer across
isomorphic problem situations, and Reed, Ernst, & Banerji [7] nave examined homo-
morphic prov»lems; 2) the occurance of developmental stages or substages
corresponding to the acquisitiom of symmetry groups or their subgroups; 3) age,
sex, or cross—cultural differences in the effects of problem structure on

problem solving behavior.
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Figure 1. Two different 'forking moves' on the Tic-Tac-Toe board. The 'forking
move is indicated [Ef and it is O's turn to play. Each of the forks is
conserved or invariant over the rotations and reflections of the board, and
symnetry transformations exist mapping one fork onto any other.
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Figure 2. A rearrangement of n objects in two dimensjonal space. This
transformation may be implemented by means of a one-to-one reversible

rearrangement mapping.
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FIGURE 3. Tic-Tec-Toe states eouivalent by symmnatey.

i
FIGURY 4. Nunber Scrabble uging integersl, 2, ... , 9.

This fllustrates the isomorphism between the number selection
game deccribed in the text and Tic-Tac-Toe,
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Figure 6, State gpace representation of the Tower of Hanoi/
Tea Ceremony Froblem

The four lettere labelling a state refer to the respective pegs
(persons) on which the four rings are locaited (by which the four
tasks)are preformed. Legal moves effect transiticns between
.- 1 o3 - L . !
adjacent states. Examples of 1-, 2-, J-ring |\ task) subspaces are
given.
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FIGURE 7 a. An'episode' in problem-solving.

The 2-ring subproblem is consistently sclved in the minimum number
of steps, while the 3-ring subproblem is not. The state-space has
been effectively reduced medulo its 2-ring subproblem decomposition,

" initial state

FIGURE 'h Congruent paths through isomorphic subproblems.

All three paths through the 2-ring subproblems in Figure 6 Pare
congruent to each other.



e AT T

——
Q‘ Start }~---------"":j‘t\_‘::'b ALA

T R e e

W A
7/ BAAA
Figure 8ag. A subjeci's },{_m,ﬁ’ k“ d

R Trigl 1:
_Lh_* wrotigh the ;f’r/_; (%
~te snece of D fif/j \" ":“‘CU Triagl 27 e e v e
+' 3 Tower OF . o4 &J ! '-\'._\- Al -
e Triel Z: S VTR
Hanodl Problen,. Y. b A AL A ot

f":ufm . @CCE’& Trizl 47
En 0 0 O 8

NN NN SN
O\ \}\,, C""\)Bﬂl\

N O, ) :/.“ l"‘r\wdr
. OO QO \ | (9/3(“
’ | LACD (:) O (:) O BBCE CCLe (/) Q Q ngc

O OO "“‘O O
: O 00 & O O
#0000 0000 0560-6660 =
.,.,.,g;.{;;w.,,\ bihsA — ]
) mm I,
Figure 8b A‘",'\n“‘ﬂ &

A Tyial 1: e e tmr——
pathe ‘r‘lro el She 1/} (a

\!"' 4'.':4 cw’

Trial 2¢ e e o
i OO Cyeen
the Tes f‘eLe‘rno

ﬂ l'
rial 3: frrdodap-
Probiem. . N hraariasin,
My

| &
\) 5rca caxc OO (R ase




